Third Edition

Introduction to Computational Chemistry

Frank Jensen

Introduction to Computational Chemistry

Introduction to Computational Chemistry

Third Edition

Frank Jensen Department of Chemistry, Aarhus University, Denmark

WILEY

© 2017 by John Wiley & Sons, Ltd

 Registered Office:
 John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

 Editorial Offices:
 9600 Garsington Road, Oxford, OX4 2DQ, UK

 The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

 111 River Street, Hoboken, NJ 07030-5774, USA

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell.

The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is not engaged in rendering professional services and neither the publisher nor the author shall be liable for damages arising herefrom. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data

Names: Jensen, Frank, author.

Title: Introduction to computational chemistry / Frank Jensen.

Description: Third edition. | Chichester, UK ; Hoboken, NJ : John Wiley & Sons, 2017. | Includes index.

Identifiers: LCCN 2016039772 (print) | LCCN 2016052630 (ebook) | ISBN 9781118825990 (pbk.) | ISBN 9781118825983 (pdf) | ISBN 9781118825952 (epub)

Subjects: LCSH: Chemistry, Physical and theoretical–Data processing. | Chemistry, Physical and theoretical–Mathematics. Classification: LCC QD455.3.E4 J46 2017 (print) | LCC QD455.3.E4 (ebook) | DDC 541.0285–dc23 LC record available at https://lccn.loc.gov/2016039772

A catalogue record for this book is available from the British Library.

ISBN: 9781118825990

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Set in 10/12pt WarnockPro by Aptara Inc., New Delhi, India

 $10 \hspace{0.2cm} 9 \hspace{0.2cm} 8 \hspace{0.2cm} 7 \hspace{0.2cm} 6 \hspace{0.2cm} 5 \hspace{0.2cm} 4 \hspace{0.2cm} 3 \hspace{0.2cm} 2 \hspace{0.2cm} 1$

Contents

	Preface to	o the First Edition	xν
	Preface to	o the Second Edition	xix
	Preface to	o the Third Edition	xxi
1	Introduct	ion	1
1.1	Funda	amental Issues	2
1.2	Desci	ibing the System	3
1.3	Funda	amental Forces	3
1.4	The D	ynamical Equation	5
1.5	Solvii	ng the Dynamical Equation	7
1.6	Separ	ation of Variables	8
	1.6.1	Separating Space and Time Variables	9
	1.6.2	Separating Nuclear and Electronic Variables	9
	1.6.3	Separating Variables in General	10
1.7	Class	ical Mechanics	11
	1.7.1	The Sun–Earth System	11
	1.7.2	The Solar System	12
1.8	Quan	tum Mechanics	13
	1.8.1	A Hydrogen-Like Atom	13
	1.8.2	The Helium Atom	16
1.9	Cherr	listry	18
	Refer	ences	19
2	Force Fie	d Methods	20
2.1	Intro	luction	20
2.2	The F	orce Field Energy	21
	2.2.1	The Stretch Energy	23
	2.2.2	The Bending Energy	25
	2.2.3	The Out-of-Plane Bending Energy	28
	2.2.4	The Torsional Energy	28
	2.2.5	The van der Waals energy	32
	2.2.6	The Electrostatic Energy: Atomic Charges	37
	2.2.7	The Electrostatic Energy: Atomic Multipoles	41
	2.2.8	The Electrostatic Energy: Polarizability and Charge Penetration Effects	42

v

vi	Contents		
----	----------	--	--

	2.2.9	Cross Terms	48
	2.2.10	Small Rings and Conjugated Systems	49
	2.2.11	Comparing Energies of Structurally Different Molecules	51
2.3	Force F	ield Parameterization	53
	2.3.1	Parameter Reductions in Force Fields	58
	2.3.2	Force Fields for Metal Coordination Compounds	59
	2.3.3	Universal Force Fields	62
2.4	Differe	nces in Atomistic Force Fields	62
2.5	Water I	Models	66
2.6	Coarse	Grained Force Fields	67
2.7	Compu	tational Considerations	69
2.8	Validat	ion of Force Fields	71
2.9	Practic	al Considerations	73
2.10	Advant	ages and Limitations of Force Field Methods	73
2.11	Transit	ion Structure Modeling	74
	2.11.1	Modeling the TS as a Minimum Energy Structure	74
	2.11.2	Modeling the TS as a Minimum Energy Structure on the Reactant/Product	
		Energy Seam	75
	2.11.3	Modeling the Reactive Energy Surface by Interacting Force Field Functions	76
	2.11.4	Reactive Force Fields	77
2.12	Hybrid	Force Field Electronic Structure Methods	78
	Referer	ices	82
<u>э</u> ц			00
3 H	artree-FC	ishatia and Baun. Onnenhaimer Annuavimationa	88
5.1 2 0	Lantro	abauc and born–Oppenneimer Approximations	90
5.2 2.2	The En	error of a Slater Determinant	94
3.3 2.4	Koopm	ans' Theorem	100
3.4 2.5	The Ba	ris Set Approximation	100
3.5	An Alt	arnative Formulation of the Variational Droblem	101
3.0	Restric	ted and Unrestricted Hartree_Fock	105
3.8	SCF Te	chniques	100
5.0	381	SCE Convergence	108
	382	Use of Symmetry	110
	3.8.3	Ensuring that the HE Energy Is a Minimum, and the Correct Minimum	111
	3.8.4	Initial Guess Orbitals	113
	3.8.5	Direct SCF	113
	3.8.6	Reduced Scaling Techniques	116
	3.8.7	Reduced Prefactor Methods	117
3.9	Periodi	c Systems	119
	Referer	nces	121
4 FI	ectron Cr	prelation Methods	194
4.1	Excited	Slater Determinants	124
4.2	Config	uration Interaction	123
1. 	4.2.1	CI Matrix Elements	120
	4.2.2	Size of the CI Matrix	131
			101

			Contents	vii
	4.2.3	Truncated CI Methods	133	
	4.2.4	Direct CI Methods	134	
4.3	Illustra	ating how CI Accounts for Electron Correlation, and the RHF Dissociation		
	Proble	m	135	
4.4	The U	HF Dissociation and the Spin Contamination Problem	138	
4.5	Size C	onsistency and Size Extensivity	142	
4.6	Multic	onfiguration Self-Consistent Field	143	
4.7	Multir	eference Configuration Interaction	148	
4.8	Many-	Body Perturbation Theory	148	
	4.8.1	Møller–Plesset Perturbation Theory	151	
	4.8.2	Unrestricted and Projected Møller–Plesset Methods	156	
4.9	Couple	ed Cluster	157	
	4.9.1	Truncated coupled cluster methods	160	
4.10	Conne	ctions between Coupled Cluster, Configuration Interaction and Perturbation		
	Theory	<i>y</i>	162	
	4.10.1	Illustrating Correlation Methods for the Beryllium Atom	165	
4.11	Metho	ds Involving the Interelectronic Distance	166	
4.12	Techni	iques for Improving the Computational Efficiency	169	
	4.12.1	Direct Methods	170	
	4.12.2	Localized Orbital Methods	172	
	4.12.3	Fragment-Based Methods	173	
	4.12.4	Tensor Decomposition Methods	173	
4.13	Summ	ary of Electron Correlation Methods	174	
4.14	Excite	d States	176	
	4.14.1	Excited State Analysis	181	
4.15	Quant	um Monte Carlo Methods	183	
	Refere	nces	185	
5 Ba	asis Sets		188	
5.1	Slater-	and Gaussian-Type Orbitals	189	
5.2	Classif	ication of Basis Sets	190	
5.3	Consti	ruction of Basis Sets	194	
	5.3.1	Exponents of Primitive Functions	194	
	5.3.2	Parameterized Exponent Basis Sets	195	
	5.3.3	Basis Set Contraction	196	
	5.3.4	Basis Set Augmentation	199	
5.4	Examp	oles of Standard Basis Sets	200	
	5.4.1	Pople Style Basis Sets	200	
	5.4.2	Dunning–Huzinaga Basis Sets	202	
	5.4.3	Karlsruhe-Type Basis Sets	203	
	5.4.4	Atomic Natural Orbital Basis Sets	203	
	5.4.5	Correlation Consistent Basis Sets	204	
	5.4.6	Polarization Consistent Basis Sets	205	
	5.4.7	Correlation Consistent F12 Basis Sets	206	
	5.4.8	Relativistic Basis Sets	207	
	5.4.9	Property Optimized Basis Sets	207	
5.5	Plane '	Wave Basis Functions	208	

viii	Content	ts	
	5.6	Grid and Wavelet Basis Sets	210
	5.7	Fitting Basis Sets	211
	5.8	Computational Issues	211
	5.9	Basis Set Extrapolation	212
	5.10	Composite Extrapolation Procedures	215
		5.10.1 Gaussian-n Models	216
		5.10.2 Complete Basis Set Models	217
		5.10.3 Weizmann-n Models	219
		5.10.4 Other Composite Models	221
	5.11	Isogyric and Isodesmic Reactions	222
	5.12	Effective Core Potentials	223
	5.13	Basis Set Superposition and Incompleteness Errors	226
		References	228
	6 D	ensity Functional Methods	233
	6.1	Orbital-Free Density Functional Theory	234
	6.2	Kohn–Sham Theory	235
	6.3	Reduced Density Matrix and Density Cumulant Methods	237
	6.4	Exchange and Correlation Holes	241
	6.5	Exchange–Correlation Functionals	244
		6.5.1 Local Density Approximation	247
		6.5.2 Generalized Gradient Approximation	248
		6.5.3 Meta-GGA Methods	251
		6.5.4 Hybrid or Hyper-GGA Methods	252
		6.5.5 Double Hybrid Methods	253
		6.5.6 Range-Separated Methods	254
		6.5.7 Dispersion-Corrected Methods	255
		6.5.8 Functional Overview	257
	6.6	Performance of Density Functional Methods	258
	6.7	Computational Considerations	260
	6.8	Differences between Density Functional Theory and Hartree-F	ock 262
	6.9	Time-Dependent Density Functional Theory (TDDFT)	263
		6.9.1 Weak Perturbation – Linear Response	266
	6.10	Ensemble Density Functional Theory	268
	6.11	Density Functional Theory Problems	269
	6.12	Final Considerations	269
		References	270
	7 Se	emi-empirical Methods	275
	7.1	Neglect of Diatomic Differential Overlap (NDDO) Approximat	tion 276
	7.2	Intermediate Neglect of Differential Overlap (INDO) Approxir	mation 277
	7.3	Complete Neglect of Differential Overlap (CNDO) Approxima	tion 277
	7.4	Parameterization	278
		7.4.1 Modified Intermediate Neglect of Differential Overlap	(MINDO) 278
		7.4.2 Modified NDDO Models	279
		7.4.3 Modified Neglect of Diatomic Overlap (MNDO)	280

			Contents	ix
	7.4.4	Austin Model 1 (AM1)	281	
	7.4.5	Modified Neglect of Diatomic Overlap, Parametric Method Number 3		
		(PM3)	281	
	7.4.6	The MNDO/d and AM1/d Methods	282	
	7.4.7	Parametric Method Numbers 6 and 7 (PM6 and PM7)	282	
	7.4.8	Orthogonalization Models	283	
7.5	Hücke	l Theory	283	
	7.5.1	Extended Hückel theory	283	
	7.5.2	Simple Hückel Theory	284	
7.6	Tight-1	Binding Density Functional Theory	285	
7.7	Perfor	mance of Semi-empirical Methods	287	
7.8	Advan	tages and Limitations of Semi-empirical Methods	289	
	Refere	nces	290	
8	Valence Bo	ond Methods	291	
8.1	Classic	cal Valence Bond Theory	292	
8.2	Spin-C	Coupled Valence Bond Theory	293	
8.3	Genera	alized Valence Bond Theory	297	
	Refere	nces	298	
9	Relativisti	c Methods	299	
9.1	The Di	rac Equation	300	
9.2	Conne	ctions between the Dirac and Schrödinger Equations	302	
	9.2.1	Including Electric Potentials	302	
	9.2.2	Including Both Electric and Magnetic Potentials	304	
9.3	Many-	Particle Systems	306	
9.4	Four-C	Component Calculations	309	
9.5	Two-C	component Calculations	310	
9.6	Relativ	istic Effects	313	
	Refere	nces	315	
10	Wave Fund	tion Analysis	317	
10.1	Popula	tion Analysis Based on Basis Functions	317	
10.2	2 Popula	tion Analysis Based on the Electrostatic Potential	320	
10.3	8 Popula	tion Analysis Based on the Electron Density	323	
	10.3.1	Quantum Theory of Atoms in Molecules	324	
	10.3.2	Voronoi, Hirshfeld, Stockholder and Stewart Atomic Charges	327	
	10.3.3	Generalized Atomic Polar Tensor Charges	329	
10.4	Localiz	zed Orbitals	329	
	10.4.1	Computational considerations	332	
10.5	Natura	ll Orbitals	333	
10	10.5.1	Natural Atomic Orbital and Natural Bond Orbital Analyses	334	
10.6	Comp	atational Considerations	337	
10.7	Examp	165	338	
	Kefere	nces	339	

x	Contents	
×	Contents	

11 M	olecular Properties	341
11.1	Examples of Molecular Properties	343
	11.1.1 External Electric Field	343
	11.1.2 External Magnetic Field	344
	11.1.3 Nuclear Magnetic Moments	345
	11.1.4 Electron Magnetic Moments	345
	11.1.5 Geometry Change	346
	11.1.6 Mixed Derivatives	346
11.2	Perturbation Methods	347
11.3	Derivative Techniques	349
11.4	Response and Propagator Methods	351
11.5	Lagrangian Techniques	351
11.6	Wave Function Response	353
	11.6.1 Coupled Perturbed Hartree–Fock	354
11.7	Electric Field Perturbation	357
	11.7.1 External Electric Field	357
	11.7.2 Internal Electric Field	358
11.8	Magnetic Field Perturbation	358
	11.8.1 External Magnetic Field	360
	11.8.2 Nuclear Spin	361
	11.8.3 Electron Spin	361
	11.8.4 Electron Angular Momentum	362
	11.8.5 Classical Terms	362
	11.8.6 Relativistic Terms	363
	11.8.7 Magnetic Properties	363
	11.8.8 Gauge Dependence of Magnetic Properties	366
11.9	Geometry Perturbations	367
11.10	Time-Dependent Perturbations	372
11.11	Rotational and Vibrational Corrections	377
11.12	Environmental Effects	378
11.13	Relativistic Corrections	378
	References	378
12 III	ustrating the Concepts	380
12.1	Geometry Convergence	380
	12.1.1 Wave Function Methods	380
	12.1.2 Density Functional Methods	382
12.2	Total Energy Convergence	383
12.3	Dipole Moment Convergence	385
	12.3.1 Wave Function Methods	385
	12.3.2 Density Functional Methods	385
12.4	Vibrational Frequency Convergence	386
	12.4.1 Wave Function Methods	386
12.5	Bond Dissociation Curves	389
	12.5.1 Wave Function Methods	389
	12.5.2 Density Functional Methods	394
12.6	Angle Bending Curves	394

		Contents x i
12.7	Problematic Systems	396
	12.7.1 The Geometry of FOOF	396
	12.7.2 The Dipole Moment of CO	397
	12.7.3 The Vibrational Frequencies of O ₃	398
12.8	Relative Energies of C_4H_6 Isomers	399
	References	402
13 Op	ptimization Techniques	404
13.1	Optimizing Quadratic Functions	405
13.2	Optimizing General Functions: Finding Minima	407
	13.2.1 Steepest Descent	407
	13.2.2 Conjugate Gradient Methods	408
	13.2.3 Newton–Raphson Methods	409
	13.2.4 Augmented Hessian Methods	410
	13.2.5 Hessian Update Methods	411
	12.2.6 Iruncated nessian Methods	415
122	Choice of Coordinator	415
13.5	Optimizing General Functions: Finding Saddle Doints (Transition Structures)	415
13.4	13.4.1 One-Structure Interpolation Methods	410
	13.4.2 Two-Structure Interpolation Methods	421
	13.4.3 Multistructure Interpolation Methods	422
	13.4.4 Characteristics of Interpolation Methods	426
	13.4.5 Local Methods: Gradient Norm Minimization	427
	13.4.6 Local Methods: Newton–Raphson	427
	13.4.7 Local Methods: The Dimer Method	429
	13.4.8 Coordinates for TS Searches	429
	13.4.9 Characteristics of Local Methods	430
	13.4.10 Dynamic Methods	431
13.5	Constrained Optimizations	431
13.6	Global Minimizations and Sampling	433
	13.6.1 Stochastic and Monte Carlo Methods	434
	13.6.2 Molecular Dynamics Methods	436
	13.6.3 Simulated Annealing	436
	13.6.4 Genetic Algorithms	437
	13.6.5 Particle Swarm and Gravitational Search Methods	437
	13.6.6 Diffusion Methods	438
	13.6.7 Distance Geometry Methods	439
127	13.6.8 Characteristics of Global Optimization Methods	439
13./	Molecular Docking	440
15.0	Peterongos	441
	NCICI CIICES	'4'4'1
14 St	atistical Mechanics and Transition State Theory	447
14.1	Transition State Theory	447
14.2	Rice–Ramsperger–Kassel–Marcus Theory	450
14.3	Dynamical Effects	451

xii	Contents	
-----	----------	--

14.4	4 Statistical Mechanics	
14.5	The Ideal Gas, Rigid-Rotor Harmonic-Oscillator Approximation	454
	14.5.1 Translational Degrees of Freedom	455
	14.5.2 Rotational Degrees of Freedom	455
	14.5.3 Vibrational Degrees of Freedom	457
	14.5.4 Electronic Degrees of Freedom	458
	14.5.5 Enthalpy and Entropy Contributions	459
14.6	Condensed Phases	464
	References	468
15 Si	imulation Techniques	469
15.1	Monte Carlo Methods	472
	15.1.1 Generating Non-natural Ensembles	474
15.2	Time-Dependent Methods	474
10.2	15.2.1 Molecular Dynamics Methods	474
	15.2.2 Generating Non-natural Ensembles	478
	15.2.2 Centertaining room intertain Enformation	479
	15.2.4 Direct Methods	479
	15.2.5 Ab Initio Molecular Dynamics	480
	15.2.5 AD Initio Molecular Dynamics	480
	15.2.7 Deaction Dath Methods	403
	15.2.7 Neaction Fain Methods	404
	15.2.0 Constrained and Biased Sampling Methods	407
15.2	Deriodic Boundary Conditions	400
15.5	Extracting Information from Simulations	491
15.4 15.5	Excluding miorination nom simulations	494
15.5	Free Energy Methods	499
	15.5.1 Inermodynamic Perturbation Methods	499
150	15.5.2 Inermodynamic Integration Methods	500
15.6	Solvation Models	502
	15.6.1 Continuum Solvation Models	503
	15.6.2 Poisson–Boltzmann Methods	505
	15.6.3 Born/Onsager/Kirkwood Models	506
	15.6.4 Self-Consistent Reaction Field Models	508
	References	511
16 Q	ualitative Theories	515
16.1	Frontier Molecular Orbital Theory	515
16.2	Concepts from Density Functional Theory	519
16.3	Qualitative Molecular Orbital Theory	522
16.4	Energy Decomposition Analyses	524
16.5	Orbital Correlation Diagrams: The Woodward–Hoffmann Rules	526
16.6	The Bell–Evans–Polanyi Principle/Hammond Postulate/Marcus Theory	534
16.7	More O'Ferrall–Jencks Diagrams	538
	References	541
17 M	lathematical Methods	543
17.1	Numbers, Vectors, Matrices and Tensors	543
17.2	Change of Coordinate System	549

		Contents
	17.2.1 Examples of Changing the Coordinate System	554
	17.2.2 Vibrational Normal Coordinates	555
	17.2.3 Energy of a Slater Determinant	557
	17.2.4 Energy of a CI Wave Function	558
	17.2.5 Computational Considerations	558
17.3	Coordinates, Functions, Functionals, Operators and Superoperators	560
	17.3.1 Differential Operators	562
17.4	Normalization, Orthogonalization and Projection	563
17.5	Differential Equations	565
	17.5.1 Simple First-Order Differential Equations	565
	17.5.2 Less Simple First-Order Differential Equations	566
	17.5.3 Simple Second-Order Differential Equations	566
	17.5.4 Less Simple Second-Order Differential Equations	567
	17.5.5 Second-Order Differential Equations Depending on the Function Itself	568
17.6	Approximating Functions	568
	17.6.1 Taylor Expansion	569
	17.6.2 Basis Set Expansion	570
	17.6.3 Tensor Decomposition Methods	572
	17.6.4 Examples of Tensor Decompositions	574
17.7	Fourier and Laplace Transformations	577
17.8	Surfaces	577
	References	580
18	Statistics and QSAR	581
18.1	Introduction	581
18.2	Elementary Statistical Measures	583
18.3	Correlation between Two Sets of Data	585
18.4	Correlation between Many Sets of Data	588
	18.4.1 Quality Measures	589
	18.4.2 Multiple Linear Regression	590
	18.4.3 Principal Component Analysis	591
	18.4.4 Partial Least Squares	593
	18.4.5 Illustrative Example	594
18.5	Quantitative Structure–Activity Relationships (QSAR)	595
18.6	Non-linear Correlation Methods	597
18.7	Clustering Methods	598
	References	604
19	Concluding Remarks	605
	Appendix A	608
	Notation	608
	Appendix B	614
	The Variational Principle	614
	The Hohenberg–Kohn Theorems	615
	The Adiabatic Connection Formula	616
	Reference	617

xiii

xiv Contents

Appendix C	618
Atomic Units	618
Appendix D	619
Z Matrix Construction	619
Appendix E	627
First and Second Quantization	627
References	628
Index	629

Preface to the First Edition

Computational chemistry is rapidly emerging as a subfield of theoretical chemistry, where the primary focus is on solving chemically related problems by calculations. For the newcomer to the field, there are three main problems:

- (1) Deciphering the code. The language of computational chemistry is littered with acronyms, what do these abbreviations stand for in terms of underlying assumptions and approximations?
- (2) Technical problems. How does one actually run the program and what to look for in the output?
- (3) Quality assessment. How good is the number that has been calculated?

Point (1) is part of every new field: there is not much to do about it. If you want to live in another country, you have to learn the language. If you want to use computational chemistry methods, you need to learn the acronyms. I have tried in the present book to include a good fraction of the most commonly used abbreviations and standard procedures.

Point (2) is both hardware and software specific. It is not well suited for a textbook, as the information rapidly becomes out of date. The average lifetime of computer hardware is a few years, the time between new versions of software is even less. Problems of type (2) need to be solved "on location". I have made one exception, however, and have included a short discussion of how to make Z-matrices. A Z-matrix is a convenient way of specifying a molecular geometry in terms of internal coordinates, and it is used by many electronic structure programs. Furthermore, geometry optimizations are often performed in Z-matrix variables, and since optimizations in a good set of internal coordinates are significantly faster than in Cartesian coordinates, it is important to have a reasonable understanding of Z-matrix construction.

As computer programs evolve they become easier to use. Modern programs often communicate with the user in terms of a graphical interface, and many methods have become essential "black box" procedures: if you can draw the molecule, you can also do the calculation. This effectively means that you no longer have to be a highly trained theoretician to run even quite sophisticated calculations.

The ease with which calculations can be performed means that point (3) has become the central theme in computational chemistry. It is quite easy to run a series of calculations that produce results that are absolutely meaningless. The program will not tell you whether the chosen method is valid for the problem you are studying. Quality assessment is thus an absolute requirement. This, however, requires much more experience and insight than just running the program. A basic understanding of the theory behind the method is needed, and a knowledge of the performance of the method for other systems. If you are breaking new ground, where there is no previous experience, you need a way of calibrating the results.

xvi Preface to the First Edition

The lack of quality assessment is probably one of the reasons why computational chemistry has (had) a somewhat bleak reputation. "If five different computational methods give five widely different results, what has computational chemistry contributed? You just pick the number closest to experiments and claim that you can reproduce experimental data accurately." One commonly sees statements of the type "The theoretical results for property X are in disagreement. Calculation at the CCSD(T)/6-31G(d,p) level predicts that..., while the MINDO/3 method gives opposing results. There is thus no clear consent from theory." This is clearly a lack of understanding of the quality of the calculations. If the results disagree, there is a very high probability that the CCSD(T) results are basically correct, and the MINDO/3 results are wrong. If you want to make predictions, and not merely reproduce known results, you need to be able to judge the quality of your results. This is by far the most difficult task in computational chemistry. I hope the present book will give some idea of the limitations of different methods.

Computers don't solve problems, people do. Computers just generate numbers. Although computational chemistry has evolved to the stage where it often can be competitive with experimental methods for generating a value for a given property of a given molecule, the number of possible molecules (there are an estimated 10^{200} molecules with a molecular weight less than 850) and their associated properties is so huge that only a very tiny fraction will ever be amenable to calculations (or experiments). Furthermore, with the constant increase in computational power, a calculation that barely can be done today will be possible on medium-sized machines in 5–10 years. Prediction of properties with methods that do not provide converged results (with respect to theoretical level) will typically only have a lifetime of a few years before being surpassed by more accurate calculations.

The real strength of computational chemistry is the ability to generate data (e.g. by analyzing the wave function) from which a human may gain *insight*, and thereby rationalize the behavior of a large class of molecules. Such insights and rationalizations are much more likely to be useful over a longer period of time than the raw results themselves. A good example is the concept used by organic chemists with molecules composed of functional groups, and representing reactions by "pushing electrons". This may not be particularly accurate from a quantum mechanical point of view, but it is very effective in rationalizing a large body of experimental results, and has good predictive power.

Just as computers do not solve problems, mathematics by itself does not provide insight. It merely provides formulas, a framework for organizing thoughts. It is in this spirit that I have tried to write this book. Only the necessary (obviously a subjective criterion) mathematical background has been provided, the aim being that the reader should be able to understand the premises and limitations of different methods, and follow the main steps in running a calculation. This means that in many cases I have omitted to tell the reader of some of the finer details, which may annoy the purists. However, I believe the large overview is necessary before embarking on a more stringent and detailed derivation of the mathematics. The goal of this book is to provide an overview of commonly used methods, giving enough theoretical background to understand why, for example, the AMBER force field is used for modeling proteins but MM2 is used for small organic molecules, or why coupled cluster inherently is an iterative method, while perturbation theory and configuration interaction inherently are non-iterative methods, although the CI problem in practice is solved by iterative techniques.

The prime focus of this book is on calculating molecular structures and (relative) energies, and less on molecular properties or dynamical aspects. In my experience, predicting structures and energetics are the main uses of computational chemistry today, although this may well change in the coming years. I have tried to include most methods that are already extensively used, together with some that I expect to become generally available in the near future. How detailed the methods are described depends partly on how practical and commonly used the methods are (both in terms of computational resources and software), and partly reflects my own limitations in terms of understanding. Although simulations (e.g. molecular dynamics) are becoming increasingly powerful tools, only a very rudimentary introduction is provided in Chapter 16. The area is outside my expertise, and several excellent textbooks are already available.

Computational chemistry contains a strong practical element. Theoretical methods must be translated into working computer programs in order to produce results. Different algorithms, however, may have different behaviors in practice, and it becomes necessary to be able to evaluate whether a certain type of calculation can be carried out with the available computers. The book thus contains some guidelines for evaluating what type of resources are necessary for carrying out a given calculation.

The present book grew out of a series of lecture notes that I have used for teaching a course in computational chemistry at Odense University, and the style of the book reflects its origin. It is difficult to master all disciplines in the vast field of computational chemistry. A special thanks to H. J. Aa. Jensen, K. V. Mikkelsen, T. Saue, S. P. A. Sauer, M. Schmidt, P. M. W. Gill, P.-O. Norrby, D. L. Cooper, T. U. Helgaker and H. G. Petersen for having read various parts of the book and providing input. Remaining errors are of course my sole responsibility. A good part of the final transformation from a set of lecture notes to the present book was done during a sabbatical leave spent with Prof. L. Radom at the Research School of Chemistry, Australia National University, Canberra, Australia. A special thanks to him for his hospitality during the stay.

A few comments on the layout of the book. Definitions, acronyms or common phrases are marked in *italic*; these can be found in the index. <u>Underline</u> is used for emphasizing important points. Operators, vectors and matrices are denoted in **bold**, scalars in normal text. Although I have tried to keep the notation as consistent as possible, different branches in computational chemistry often use different symbols for the same quantity. In order to comply with common usage, I have elected sometimes to switch notation between chapters. The second derivative of the energy, for example, is called the force constant *k* in force field theory; the corresponding matrix is denoted **F** when discussing vibrations, and called the Hessian **H** for optimization purposes.

I have assumed that the reader has no prior knowledge of concepts specific to computational chemistry, but has a working understanding of introductory quantum mechanics and elementary mathematics, especially linear algebra, vector, differential and integral calculus. The following features specific to chemistry are used in the present book without further introduction. Adequate descriptions may be found in a number of quantum chemistry textbooks (J. P. Lowe, *Quantum Chemistry*, Academic Press, 1993; I. N. Levine, *Quantum Chemistry*, Prentice Hall, 1992; P. W. Atkins, *Molecular Quantum Mechanics*, Oxford University Press, 1983).

- (1) The Schrödinger equation, with the consequences of quantized solutions and quantum numbers.
- (2) The interpretation of the square of the wave function as a probability distribution, the Heisenberg uncertainty principle and the possibility of tunneling.
- (3) The solutions for the hydrogen atom, atomic orbitals.
- (4) The solutions for the harmonic oscillator and rigid rotor.
- (5) The molecular orbitals for the H₂ molecule generated as a linear combination of two *s*-functions, one on each nuclear centre.
- (6) Point group symmetry, notation and representations, and the group theoretical condition for when an integral is zero.

I have elected to include a discussion of the variational principle and perturbational methods, although these are often covered in courses in elementary quantum mechanics. The properties of angular momentum coupling are used at the level of knowing the difference between a singlet and

xviii Preface to the First Edition

triplet state. I do not believe that it is necessary to understand the details of vector coupling to understand the implications.

Although I have tried to keep each chapter as self-contained as possible, there are unavoidable dependencies. The part in Chapter 3 describing HF methods is a prerequisite for understanding Chapter 4. Both these chapters use terms and concepts for basis sets which are treated in Chapter 5. Chapter 5, in turn, relies on concepts in Chapters 3 and 4, that is these three chapters form the core for understanding modern electronic structure calculations. Many of the concepts in Chapters 3 and 4 are also used in Chapters 6, 7, 9, 11 and 15 without further introduction, although these five chapters probably can be read with some benefits without a detailed understanding of Chapters 3 and 4. Chapter 8, and to a certain extent also Chapter 10, are fairly advanced for an introductory textbook, such as the present, and can be skipped. They do, however, represent areas that are probably going to be more and more important in the coming years. Function optimization, which is described separately in Chapter 14, is part of many areas, but a detailed understanding is not required for following the arguments in the other chapters. Chapters 12 and 13 are fairly self-contained, and form some of the background for the methods in the other chapters. In my own course I normally take Chapters 12, 13 and 14 fairly early in the course, as they provide background for Chapters 3, 4 and 5.

If you would like to make comments, advise me of possible errors, make clarifications, add references, etc., or view the current list of misprints and corrections, please visit the author's website (URL: http://bogense.chem.ou.dk/~icc).

Preface to the Second Edition

The changes relative to the first edition are as follows:

- Numerous misprints and inaccuracies in the first edition have been corrected. Most likely some new ones have been introduced in the process; please check the book website for the most recent correction list and feel free to report possible problems. Since web addresses have a tendency to change regularly, please use your favourite search engine to locate the current URL.
- The methodologies and references in each chapter have been updated with new developments published between 1998 and 2005.
- More extensive referencing. Complete referencing is impossible, given the large breadth of subjects. I have tried to include references that preferably are recent, have a broad scope and include key references. From these the reader can get an entry into the field.
- Many figures and illustrations have been redone. The use of color illustrations has been deferred in favor of keeping the price of the book down.
- Each chapter or section now starts with a short overview of the methods, described without mathematics. This may be useful for getting a feel for the methods, without embarking on all the mathematical details. The overview is followed by a more detailed mathematical description of the method, including some key references that may be consulted for more details. At the end of the chapter or section, some of the pitfalls and the directions of current research are outlined.
- Energy units have been converted from kcal/mol to kJ/mol, based on the general opinion that the scientific world should move towards SI units.
- Furthermore, some chapters have undergone major restructuring:
 - Chapter 16 (Chapter 13 in the first edition) has been greatly expanded to include a summary of the most important mathematical techniques used in the book. The goal is to make the book more self-contained, that is relevant mathematical techniques used in the book are at least rudimentarily discussed in Chapter 16.
 - All the statistical mechanics formalism has been collected in Chapter 13.
 - Chapter 14 has been expanded to cover more of the methodologies used in molecular dynamics.
 - Chapter 12 on optimization techniques has been restructured.
 - Chapter 6 on density functional methods has been rewritten.
 - A new Chapter 1 has been introduced to illustrate the similarities and differences between classical and quantum mechanics, and to provide some fundamental background.
 - A rudimentary treatment of periodic systems has been incorporated in Chapters 3 and 14.
 - A new Chapter 17 has been introduced to describe statistics and QSAR methods.

• I have tried to make the book more modular, that is each chapter is more self-contained. This makes it possible to use only selected chapters, for example for a course, but has the drawback of repeating the same things in several chapters, rather than simply cross-referencing.

Although the modularity has been improved, there are unavoidable interdependencies. Chapters 3, 4 and 5 contain the essentials of electronic structure theory, and most would include Chapter 6 describing density functional methods. Chapter 2 contains a description of empirical force field methods, and this is tightly coupled to the simulation methods in Chapter 14, which of course leans on the statistical mechanics in Chapter 13. Chapter 1 on fundamental issues is of a more philosophical nature, and can be skipped. Chapter 16 on mathematical techniques is mainly for those not already familiar with this, and Chapter 17 on statistical methods may be skipped as well.

Definitions, acronyms and common phrases are marked in *italic*. In a change from the first edition, where underlining was used, *italic* text has also been used for emphasizing important points.

A number of people have offered valuable help and criticisms during the updating process. I would especially like to thank S. P. A. Sauer, H. J. Aa. Jensen, E. J. Baerends and P. L. A. Popelier for having read various parts of the book and provided input. Remaining errors are of course my sole responsibility.

Specific Comments on the Preface to the First Edition

Bohacek *et al.*¹ have estimated the number of possible compounds composed of H, C, N, O and S atoms with 30 non-hydrogen atoms or fewer to be 10^{60} . Although this number is so large that only a very tiny fraction will ever be amenable to investigation, the concept of functional groups means that one does not need to evaluate all compounds in a given class to determine their properties. The number of alkanes meeting the above criteria is ~ 10^{10} : clearly these will all have very similar and well-understood properties, and there is no need to investigate all 10^{10} compounds.

Reference

1 R. S. Bohacek, C. McMartin and W. C. Guida, Medicinal Research Reviews 16 (1), 3-50 (1996).

Preface to the Third Edition

The changes relative to the second edition are as follows:

Numerous misprints and inaccuracies in the second edition have been corrected. Most likely some new ones have been introduced in the process, please check the book website for the most recent correction list and feel free to report possible problems.

http://www.wiley.com/go/jensen/computationalchemistry3

- Methodologies and references in each chapter have been updated with new developments published between 2005 and 2015.
- Semi-empirical methods have been moved from Chapter 3 to a separate Chapter 7.
- Some specific new topics that have been included:
 - 1. Polarizable force fields
 - 2. Tight-binding DFT
 - 3. More extensive DFT functionals, including range-separated and dispersion corrected functionals
 - 4. More extensive covering of excited states
 - 5. More extensive time-dependent molecular properties
 - 6. Accelerated molecular dynamics methods
 - 7. Tensor decomposition methods
 - 8. Cluster analysis
 - 9. Reduced scaling and reduced prefactor methods.

A reoccuring request over the years for a third edition has been: "It would be very useful to have recommendations on which method to use for a given type of problem." I agree that this would be useful, but I have refrained from it for two main reasons:

- 1. Problems range from very narrow ones for a small set of systems, to very broad ones for a wide set of systems, and covering these and all intermediate cases even rudementary is virtually impossible.
- 2. Making recommendations like "*do not use method XXX because it gives poor results*" will immediately invoke harsh responses from the developers of method XXX, showing that it gives good results for a selected subset of problems and systems.

A vivid example of the above is the pletora of density functional methods where a particular functional often gives good results for a selected subset of systems and properties, but may fail for other

xxii Preface to the Third Edition

subsets of systems and properties, and no current functional provides good results for all systems and properties. I have limited the recommendations to point out well-known deficiencies.

A similar problem is present when selecting references. I have selected references based on three overriding principles:

- 1. References to work containing reference data, such as experimental structural results, or groundbreaking work, such as the Hohenberg–Koch theorem, are to the original work.
- 2. Early in each chapter or subsection, I have included review-type papers, where these are available.
- 3. Lacking review-type papers, I have selected one or a few papers that preferably are recent, but must at the same time also be written in a scholarly style, and should contain a good selection of references.

The process of literature searching has improved tremendously over the years, and having a few entry points usually allows searching both backwards and forwards to find other references within the selected topic.

In relation to the quoted number of compounds possible for a given number of atoms, Ruddigkeit *et al.* have estimated the number of plausible compounds composed of H, C, N, O, S and a halogen with up to 17 non-hydrogen atoms to be 166×10^9 .¹

Reference

1 L. Ruddigkeit, R. van Deursen, L. C. Blum and J.-L. Reymond, *Journal of Chemical Information and Modeling* 52 (11), 2864–2875 (2012).

Introduction

Chemistry is the science dealing with construction, transformation and properties of molecules. Theoretical chemistry is the subfield where mathematical methods are combined with fundamental laws of physics to study processes of chemical relevance.^{1–7}

Molecules are traditionally considered as "composed" of atoms or, in a more general sense, as a collection of charged particles, positive nuclei and negative electrons. The only important physical force for chemical phenomena is the Coulomb interaction between these charged particles. Molecules differ because they contain different nuclei and numbers of electrons, or because the nuclear centers are at different geometrical positions. The latter may be "chemically different" molecules such as ethanol and dimethyl ether or different "conformations" of, for example, butane.

Given a set of nuclei and electrons, theoretical chemistry can attempt to calculate things such as:

- Which geometrical arrangements of the nuclei correspond to stable molecules?
- What are their relative energies?
- What are their properties (dipole moment, polarizability, NMR coupling constants, etc.)?
- What is the rate at which one stable molecule can transform into another?
- What is the time dependence of molecular structures and properties?
- How do different molecules interact?

The only systems that can be solved exactly are those composed of only one or two particles, where the latter can be separated into two pseudo one-particle problems by introducing a "center of mass" coordinate system. Numerical solutions to a given accuracy (which may be so high that the solutions are essentially "exact") can be generated for many-body systems, by performing a very large number of mathematical operations. Prior to the advent of electronic computers (i.e. before 1950), the number of systems that could be treated with a high accuracy was thus very limited. During the 1960s and 1970s, electronic computers evolved from a few very expensive, difficult to use, machines to become generally available for researchers all over the world. The performance for a given price has been steadily increasing since and the use of computers is now widespread in many branches of science. This has spawned a new field in chemistry, *computational chemistry*, where the computer is used as an "experimental" tool, much like, for example, an NMR (nuclear magnetic resonance) spectrometer.

Computational chemistry is focused on obtaining results relevant to chemical problems, not directly at developing new theoretical methods. There is of course a strong interplay between traditional theoretical chemistry and computational chemistry. Developing new theoretical models may

Introduction to Computational Chemistry, Third Edition. Frank Jensen. © 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd. Companion Website: http://www.wiley.com/go/jensen/computationalchemistry3

1

2 Introduction to Computational Chemistry

enable new problems to be studied, and results from calculations may reveal limitations and suggest improvements in the underlying theory. Depending on the accuracy wanted, and the nature of the system at hand, one can today obtain useful information for systems containing up to several thousand particles. One of the main problems in computational chemistry is selecting a suitable level of theory for a given problem and to be able to evaluate the quality of the obtained results. The present book will try to put the variety of modern computational methods into perspective, hopefully giving the reader a chance of estimating which types of problems can benefit from calculations.

1.1 Fundamental Issues

Before embarking on a detailed description of the theoretical methods in computational chemistry, it may be useful to take a wider look at the background for the theoretical models and how they relate to methods in other parts of science, such as physics and astronomy.

A very large fraction of the computational resources in chemistry and physics is used in solving the so-called *many-body problem*. The essence of the problem is that two-particle systems can in many cases be solved exactly by mathematical methods, producing solutions in terms of analytical functions. Systems composed of more than two particles cannot be solved by analytical methods. Computational methods can, however, produce approximate solutions, which in principle may be refined to any desired degree of accuracy.

Computers are not smart – at the core level they are in fact very primitive. Smart programmers, however, can make sophisticated computer programs, which may make the computer appear smart, or even intelligent. However, the basics of any computer program consist of doing a few simple tasks such as:

- Performing a mathematical operation (adding, multiplying, square root, cosine, etc.) on one or two numbers.
- Determining the relationship (equal to, greater than, less than or equal to, etc.) between two numbers.
- Branching depending on a decision (add two numbers if *N* > 10, else subtract one number from the other).
- Looping (performing the same operation a number of times, perhaps on a set of data).
- Reading and writing data from and to external files.

These tasks are the essence of any programming language, although the syntax, data handling and efficiency depend on the language. The main reason why computers are so useful is the sheer speed with which they can perform these operations. Even a cheap off-the-shelf personal computer can perform billions (10^9) of operations per second.

Within the scientific world, computers are used for two main tasks: performing numerically intensive calculations and analyzing large amounts of data. The latter can, for example, be pictures generated by astronomical telescopes or gene sequences in the bioinformatics area that need to be compared. The numerically intensive tasks are typically related to simulating the behavior of the real world, by a more or less sophisticated computational model. The main problem in simulations is the multiscale nature of real-world problems, often spanning from subnanometers to millimeters $(10^{-10}-10^{-3})$ in spatial dimensions and from femtoseconds to milliseconds $(10^{-15}-10^{-3})$ in the time domain.

Introduction

Figure 1.1 Hierarchy of building blocks for describing a chemical system.

1.2 Describing the System

In order to describe a system we need four fundamental features:

- System description. What are the fundamental units or "particles" and how many are there?
- Starting condition. Where are the particles and what are their velocities?
- Interaction. What is the mathematical form for the forces acting between the particles?
- Dynamical equation. What is the mathematical form for evolving the system in time?

The choice of "particles" puts limitations on what we are ultimately able to describe. If we choose atomic nuclei and electrons as our building blocks, we can describe atoms and molecules, but not the internal structure of the atomic nucleus. If we choose atoms as the building blocks, we can describe molecular structures, but not the details of the electron distribution. If we choose amino acids as the building blocks, we may be able to describe the overall structure of a protein, but not the details of atomic movements (see Figure 1.1).

The choice of starting conditions effectively determines what we are trying to describe. The complete phase space (i.e. all possible values of positions and velocities for all particles) is huge and we will only be able to describe a small part of it. Our choice of starting conditions determines which part of the phase space we sample, for example which (structural or conformational) isomer or chemical reaction we can describe. There are many structural isomers with the molecular formula C_6H_6 , but if we want to study benzene, we should place the nuclei in a hexagonal pattern and start them with relatively low velocities.

The interaction between particles in combination with the dynamical equation determines how the system evolves in time. At the fundamental level, the only important force at the atomic level is the electromagnetic interaction. Depending on the choice of system description (particles), however, this may result in different effective forces. In force field methods, for example, the interactions are parameterized as stretch, bend, torsional, van der Waals, etc., interactions.

The dynamical equation describes the time evolution of the system. It is given as a differential equation involving both time and space derivatives, with the exact form depending on the particle masses and velocities. By solving the dynamical equation the particles' position and velocity can be predicted at later (or earlier) times relative to the starting conditions, that is how the system evolves in the phase space.

1.3 Fundamental Forces

The interaction between particles can be described in terms of either a force (\mathbf{F}) or a potential (\mathbf{V}). These are equivalent, as the force is the derivative of the potential with respect to the position \mathbf{r} :

$$\mathbf{F}(\mathbf{r}) = -\frac{\partial \mathbf{V}}{\partial \mathbf{r}} \tag{1.1}$$

3

Name	Particles	Range (m)	Relative strength
Strong interaction	Quarks	$<10^{-15}$	$ 100 \\ 0.001 \\ 1 \\ 10^{-40} $
Weak interaction	Quarks, leptons	$<10^{-15}$	
Electromagnetic	Charged particles	∞	
Gravitational	Mass particles	∞	

Current knowledge indicates that there are four fundamental interactions, at least under normal conditions, as listed in Table 1.1.

Quarks are the building blocks of protons and neutrons, and lepton is a common name for a group of particles including the electron and the neutrino. The strong interaction is the force holding the atomic nucleus together, despite the repulsion between the positively charged protons. The weak interaction is responsible for radioactive decay of nuclei by conversion of neutrons to protons (β decay). The strong and weak interactions are short-ranged and are only important within the atomic nucleus.

Both the electromagnetic and gravitational interactions depend on the inverse distance between the particles and are therefore of infinite range. The electromagnetic interaction occurs between all charged particles, while the gravitational interaction occurs between all particles with a mass, and they have the same overall functional form:

$$\mathbf{V}_{\text{elec}}(\mathbf{r}_{ij}) = C_{\text{elec}} \frac{q_i q_j}{r_{ij}}$$

$$\mathbf{V}_{\text{grav}}(\mathbf{r}_{ij}) = -C_{\text{grav}} \frac{m_i m_j}{r_{ij}}$$
(1.2)

In SI units $C_{\text{elec}} = 9.0 \times 10^9$ N m²/C² and $C_{\text{grav}} = 6.7 \times 10^{-11}$ N m²/kg², while in atomic units $C_{\text{elec}} = 1$ and $C_{\text{grav}} = 2.4 \times 10^{-43}$. On an atomic scale, the gravitational interaction is completely negligible compared with the electromagnetic interaction. For the interaction between a proton and an electron, for example, the ratio between \mathbf{V}_{elec} and \mathbf{V}_{grav} is 10^{39} . On a large macroscopic scale, such as planets, the situation is reversed. Here the gravitational interaction completely dominates and the electromagnetic interaction is absent.

On a more fundamental level, it is believed that the four forces are really just different manifestations of a single common interaction, because of the relatively low energy regime we are living in. It has been shown that the weak and electromagnetic forces can be combined into a single unified theory, called *quantum electrodynamics* (QED). Similarly, the strong interaction can be coupled with QED into what is known as the *standard model*. Much effort is being devoted to also include the gravitational interaction into a grand unified theory, and *string theory* is currently believed to hold the greatest promise for such a unification.

Only the electromagnetic interaction is important at the atomic and molecular level, and in the large majority of cases, the simple Coulomb form (in atomic units) is sufficient:

$$\mathbf{V}_{\text{Coulomb}}(\mathbf{r}_{ij}) = \frac{q_i q_j}{r_{ij}} \tag{1.3}$$

Within QED, the Coulomb interaction is only the zeroth-order term and the complete interaction can be written as an expansion in terms of the (inverse) velocity of light, *c*. For systems where relativistic effects are important (i.e. containing elements from the lower part of the periodic table) or when

high accuracy is required, the first-order correction (corresponding to an expansion up to $1/c^2$) for the electron–electron interaction may be included:

$$\mathbf{V}_{\text{elec}}(\mathbf{r}_{12}) = \frac{1}{r_{12}} \left[1 - \frac{1}{2} \left(\boldsymbol{\alpha}_1 \cdot \boldsymbol{\alpha}_2 + \frac{(\boldsymbol{\alpha}_1 \cdot \mathbf{r}_{12})(\boldsymbol{\alpha}_2 \cdot \mathbf{r}_{12})}{r_{12}^2} \right) \right]$$
(1.4)

The first-order correction is known as the *Breit* term, and α_1 and α_2 represent velocity operators. The first term in Equation (1.4) can be considered as a magnetic interaction between two electrons, but the whole Breit correction describes a "retardation" effect, since the interaction between distant particles is "delayed" relative to interactions between close particles, owing to the finite value of *c* (in atomic units, *c* ~ 137).

1.4 The Dynamical Equation

The mathematical form for the dynamical equation depends on the mass and velocity of the particles and can be divided into four regimes (see Figure 1.2).

Newtonian mechanics, exemplified by Newton's second law ($\mathbf{F} = m\mathbf{a}$), applies for "heavy", "slowmoving" particles. Relativistic effects become important when the velocity is comparable to the speed of light, causing an increase in the particle mass *m* relative to the rest mass m_0 . A pragmatic borderline between Newtonian and relativistic (Einstein) mechanics is $\sim^1/_3 c$, corresponding to a relativistic correction of a few percent.

Light particles display both wave and particle characteristics and must be described by quantum mechanics, with the borderline being approximately the mass of a proton. Electrons are much lighter and can only be described by quantum mechanics, while atoms and molecules, with a few exceptions, behave essentially as classical particles. Hydrogen (protons), being the lightest nucleus, represents a borderline case, which means that quantum corrections in some cases are essential. A prime example is the tunnelling of hydrogen through barriers, allowing reactions involving hydrogen to occur faster than expected from transition state theory.

Figure 1.2 Domains of dynamical equations.

5

6 Introduction to Computational Chemistry

A major difference between quantum and classical mechanics is that classical mechanics is *deterministic* while quantum mechanics is *probabilistic* (more correctly, quantum mechanics is also deterministic, but the interpretation is probabilistic). Deterministic means that Newton's equation can be integrated over time (forward or backward) and can predict where the particles are at a certain time. This, for example, allows prediction of where and when solar eclipses will occur many thousands of years in advance, with an accuracy of meters and seconds. Quantum mechanics, on the other hand, only allows calculation of the *probability* of a particle being at a certain place at a certain time. The probability function is given as the square of a wave function, $P(\mathbf{r},t) = \Psi^2(\mathbf{r},t)$, where the wave function Ψ is obtained by solving either the Schrödinger (non-relativistic) or Dirac (relativistic) equation. Although they appear to be the same in Figure 1.2, they differ considerably in the form of the operator **H**.

For classical mechanics at low velocities compared with the speed of light, Newton's second law applies:

$$\mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} \tag{1.5}$$

If the particle mass is constant, the derivative of the momentum \mathbf{p} is the mass times the acceleration:

$$\mathbf{p} = m\mathbf{v}$$

$$\mathbf{F} = \frac{d\mathbf{p}}{dt} = m\frac{d\mathbf{v}}{dt} = m\mathbf{a}$$
(1.6)

Since the force is the derivative of the potential (Equation (1.1)) and the acceleration is the second derivative of the position **r** with respect to time, it may also be written in a differential form:

$$-\frac{\partial \mathbf{V}}{\partial \mathbf{r}} = m \frac{\partial^2 \mathbf{r}}{\partial t^2}$$
(1.7)

Solving this equation gives the position of each particle as a function of time, that is $\mathbf{r}(t)$.

At velocities comparable to the speed of light, Newton's equation is formally unchanged, but the particle mass becomes a function of the velocity, and the force is therefore not simply a constant (mass) times the acceleration:

$$m = \frac{m_0}{\sqrt{1 - \nu^2/c^2}}$$
(1.8)

For particles with small masses, primarily electrons, quantum mechanics must be employed. At low velocities, the relevant equation is the time-dependent Schrödinger equation:

$$\mathbf{H}\Psi = i\frac{\partial\Psi}{\partial t} \tag{1.9}$$

The Hamiltonian operator is given as a sum of kinetic and potential energy operators:

$$\mathbf{H}_{\text{Schrödinger}} = \mathbf{T} + \mathbf{V}$$

$$\mathbf{T} = \frac{\mathbf{p}^2}{2m} = -\frac{1}{2m} \nabla^2$$
(1.10)

Solving the Schrödinger equation gives the wave function as a function of time, and the probability of observing a particle at a position \mathbf{r} and time t is given as the square of the wave function:

$$P(\mathbf{r}, t) = \Psi^2(\mathbf{r}, t) \tag{1.11}$$

Introduction 7

For light particles moving at a significant fraction of the speed of light, the Schrödinger equation is replaced by the Dirac equation:

$$\mathbf{H}\Psi = i\frac{\partial\Psi}{\partial t} \tag{1.12}$$

Although it is formally identical to the Schrödinger equation, the Hamiltonian operator is significantly more complicated:

$$\mathbf{H}_{\text{Dirac}} = (c\boldsymbol{\alpha} \cdot \mathbf{p} + \beta m c^2) + \mathbf{V}$$
(1.13)

The α and β are 4 × 4 matrices and the relativistic wave function consequently has four components. Traditionally, these are labelled the *large* and *small* components, each having an α and β spin function (note the difference between the α and β matrices and α and β spin functions). The large component describes the electronic part of the wave function, while the small component describes the positronic (electron antiparticle) part of the wave function, and the α and β matrices couple these components. In the limit of $c \to \infty$, the Dirac equation reduces to the Schrödinger equation, and the two large components of the wave function reduce to the α and β spin-orbitals in the Schrödinger picture.

1.5 Solving the Dynamical Equation

Both the Newton/Einstein and Schrödinger/Dirac dynamical equations are differential equations involving the derivative of either the position vector or wave function with respect to time. For twoparticle systems with simple interaction potentials V, these can be solved analytically, giving $\mathbf{r}(t)$ or $\Psi(\mathbf{r},t)$ in terms of mathematical functions. For systems with more than two particles, the differential equation must be solved by numerical techniques involving a sequence of small finite time steps.

Consider a set of particles described by a position vector \mathbf{r}_i at a given time t_i . A small time step Δt later, the positions can be calculated from the velocities, acceleration, hyperaccelerations, etc., corresponding to a Taylor expansion with time as the variable

$$\mathbf{r}_{i+1} = \mathbf{r}_i + \mathbf{v}_i(\Delta t) + \frac{1}{2}\mathbf{a}_i(\Delta t)^2 + \frac{1}{6}\mathbf{b}_i(\Delta t)^3 + \cdots$$
(1.14)

The positions a small time step Δt earlier were (replacing Δt with $-\Delta t$)

$$\mathbf{r}_{i-1} = \mathbf{r}_i - \mathbf{v}_i(\Delta t) + \frac{1}{2}\mathbf{a}_i(\Delta t)^2 - \frac{1}{6}\mathbf{b}_i(\Delta t)^3 + \cdots$$
(1.15)

Addition of these two equations gives a recipe for predicting the positions a time step Δt later from the current and previous positions, and the current acceleration, a method known as the Verlet algorithm:

$$\mathbf{r}_{i+1} = (2\mathbf{r}_i - \mathbf{r}_{i-1}) + \mathbf{a}_i (\Delta t)^2 + \cdots$$
(1.16)

Note that all odd terms in the Verlet algorithm disappear, that is the algorithm is correct to third order in the time step. The acceleration can be calculated from the force or, equivalently, the potential:

$$\mathbf{a} = \frac{\mathbf{F}}{m} = -\frac{1}{m} \frac{\partial \mathbf{V}}{\partial \mathbf{r}} \tag{1.17}$$

The time step Δt is an important control parameter for a simulation. The *largest* value of Δt is determined by the *fastest* process occurring in the system, typically being an order of magnitude smaller than the fastest process. For simulating nuclear motions, the fastest process is the motion of hydrogens, being the lightest particles. Hydrogen vibrations occur with a typical frequency of 3000 cm^{-1} ,

corresponding to $\sim 10^{14}$ s⁻¹, and therefore necessitating time steps of the order of one femtosecond (10^{-15} s).

1.6 Separation of Variables

As discussed in the previous section, the central problem is solving a differential equation with respect to either the position (classical) or wave function (quantum) for the particles in the system. The standard method of solving differential equations is to find a set of coordinates where the differential equation can be separated into less complicated equations. The first step is to introduce a *center of mass* coordinate system, defined as the mass-weighted sum of the coordinates of all particles, which allows the translation of the combined system with respect to a fixed coordinate system to be separated from the internal motion. For a two-particle system, the internal motion is then described in terms of a reduced mass moving relative to the center of mass, and this can be further transformed by introducing a coordinate system that reflects the symmetry of the interaction between the two particles. If the interaction only depends on the interparticle distance (e.g. Coulomb or gravitational interaction), the coordinate system of choice is normally a polar (two-dimensional) or spherical polar (three-dimensional) system. In these coordinate systems, the dynamical equation can be transformed into solving one-dimensional differential equations.

For more than two particles, it is still possible to make the transformation to the center of mass system. However, it is no longer possible to find a set of coordinates that allows a separation of the degrees of freedom for the internal motion, thus preventing an analytical solution. For many-body (N > 2) systems, the dynamical equation must therefore be solved by computational (numerical) methods. Nevertheless, it is often possible to achieve an approximate separation of variables based on physical properties, for example particles differing considerably in mass (such as nuclei and electrons). A two-particle system consisting of one nucleus and one electron can be solved exactly by introducing a center of mass system, thereby transforming the problem into a pseudo-particle with a reduced mass ($\mu = m_1 m_2/(m_1 + m_2)$) moving relative to the center of mass. In the limit of the nucleus being infinitely heavier than the electron, the center of mass system becomes identical to that of the nucleus. In this limit, the reduced mass becomes equal to that of the electron, which moves relative to the (stationary) nucleus. For large, but finite, mass ratios, the approximation $\mu \approx m_e$ is unnecessary but may be convenient for interpretative purposes. For many-particle systems, an exact separation is not possible, and the Born-Oppenheimer approximation corresponds to assuming that the nuclei are infinitely heavier than the electrons. This allows the electronic problem to be solved for a given set of stationary nuclei. Assuming that the electronic problem can be solved for a large set of nuclear coordinates, the electronic energy forms a parametric hypersurface as a function of the nuclear coordinates, and the motion of the nuclei on this surface can then be solved subsequently.

If an approximate separation is not possible, the many-body problem can often be transformed into a pseudo one-particle system by taking the average interaction into account. For quantum mechanics, this corresponds to the Hartree–Fock approximation, where the average electron–electron repulsion is incorporated. Such pseudo one-particle solutions often form the conceptual understanding of the system and provide the basis for more refined computational methods.

Molecules are sufficiently heavy that their motions can be described quite accurately by classical mechanics. In condensed phases (solution or solid state), there is a strong interaction between molecules, and a reasonable description can only be attained by having a large number of individual molecules moving under the influence of each other's repulsive and attractive forces. The forces in this case are complex and cannot be written in a simple form such as the Coulomb or gravitational

interaction. No analytical solutions can be found in this case, even for a two-particle (molecular) system. Similarly, no approximate solution corresponding to a Hartree–Fock model can be constructed. The only method in this case is direct simulation of the full dynamical equation.

1.6.1 Separating Space and Time Variables

The time-dependent Schrödinger equation involves differentiation with respect to both time and position, the latter contained in the kinetic energy of the Hamiltonian operator:

$$\mathbf{H}(\mathbf{r}, t)\Psi(\mathbf{r}, t) = i\frac{\partial\Psi(\mathbf{r}, t)}{\partial t}$$

$$\mathbf{H}(\mathbf{r}, t) = \mathbf{T}(\mathbf{r}) + \mathbf{V}(\mathbf{r}, t)$$
(1.18)

For (bound) systems where the potential energy operator is time-independent ($V(\mathbf{r},t) = V(\mathbf{r})$), the Hamiltonian operator becomes time-independent and yields the total energy when acting on the wave function. The energy is a constant, independent of time, but depends on the space variables.

$$\mathbf{H}(\mathbf{r}, t) = \mathbf{H}(\mathbf{r}) = \mathbf{T}(\mathbf{r}) + \mathbf{V}(\mathbf{r})$$

$$\mathbf{H}(\mathbf{r})\Psi(\mathbf{r}, t) = E(\mathbf{r})\Psi(\mathbf{r}, t)$$
(1.19)

Inserting this in the time-dependent Schrödinger equation shows that the time and space variables of the wave function can be separated:

$$\mathbf{H}(\mathbf{r})\Psi(\mathbf{r}, t) = E(\mathbf{r})\Psi(\mathbf{r}, t) = i\frac{\partial\Psi(\mathbf{r}, t)}{\partial t}$$

$$\Psi(\mathbf{r}, t) = \Psi(\mathbf{r})e^{-iEt}$$
(1.20)

The latter follows from solving the first-order differential equation with respect to time, and shows that the time dependence can be written as a simple phase factor multiplied by the spatial wave function. For time-independent problems, this phase factor is normally neglected, and the starting point is taken as the time-independent Schrödinger equation:

$$\mathbf{H}(\mathbf{r})\Psi(\mathbf{r}) = E(\mathbf{r})\Psi(\mathbf{r}) \tag{1.21}$$

1.6.2 Separating Nuclear and Electronic Variables

Electrons are very light particles and cannot be described by classical mechanics, while nuclei are sufficiently heavy that they display only small quantum effects. The large mass difference indicates that the nuclear velocities are much smaller than the electron velocities, and the electrons therefore adjust very fast to a change in the nuclear geometry.

For a general *N*-particle system, the Hamiltonian operator contains kinetic (**T**) and potential (**V**) energy for all particles:

$$\mathbf{H} = \mathbf{T} + \mathbf{V}$$
$$\mathbf{T} = \sum_{i=1}^{N} \mathbf{T}_{i} \quad ; \quad \mathbf{V} = \sum_{i>j}^{N} \mathbf{V}_{ij} \tag{1.22}$$