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xv

Preface to the First Edition

Computational chemistry is rapidly emerging as a subfield of theoretical chemistry, where the
primary focus is on solving chemically related problems by calculations. For the newcomer to the
field, there are three main problems:

(1) Deciphering the code. Te language of computational chemistry is littered with acronyms, what
do these abbreviations stand for in terms of underlying assumptions and approximations?

(2) Technical problems. How does one actually run the program and what to look for in the output?
(3) Quality assessment. How good is the number that has been calculated?

Point (1) is part of every new field: there is not much to do about it. If you want to live in another
country, you have to learn the language. If you want to use computational chemistry methods, you
need to learn the acronyms. I have tried in the present book to include a good fraction of the most
commonly used abbreviations and standard procedures.
Point (2) is both hardware and software specific. It is not well suited for a textbook, as the informa-

tion rapidly becomes out of date. Te average lifetime of computer hardware is a few years, the time
between new versions of software is even less. Problems of type (2) need to be solved “on location”. I
have made one exception, however, and have included a short discussion of how to make Z-matrices.
A Z-matrix is a convenient way of specifying a molecular geometry in terms of internal coordinates,
and it is used bymany electronic structure programs. Furthermore, geometry optimizations are often
performed inZ-matrix variables, and since optimizations in a good set of internal coordinates are sig-
nificantly faster than in Cartesian coordinates, it is important to have a reasonable understanding of
Z-matrix construction.
As computer programs evolve they become easier to use. Modern programs often communicate

with the user in terms of a graphical interface, and many methods have become essential “black
box” procedures: if you can draw the molecule, you can also do the calculation. Tis effectively
means that you no longer have to be a highly trained theoretician to run even quite sophisticated
calculations.
Te ease with which calculations can be performed means that point (3) has become the central

theme in computational chemistry. It is quite easy to run a series of calculations that produce results
that are absolutely meaningless. Te program will not tell you whether the chosen method is valid
for the problem you are studying. Quality assessment is thus an absolute requirement.Tis, however,
requires much more experience and insight than just running the program. A basic understanding
of the theory behind the method is needed, and a knowledge of the performance of the method for
other systems. If you are breaking new ground, where there is no previous experience, you need a
way of calibrating the results.
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Te lack of quality assessment is probably one of the reasons why computational chemistry has
(had) a somewhat bleak reputation. “If five different computational methods give five widely dif-
ferent results, what has computational chemistry contributed? You just pick the number closest to
experiments and claim that you can reproduce experimental data accurately.” One commonly sees
statements of the type “Te theoretical results for property X are in disagreement. Calculation at
the CCSD(T)/6-31G(d,p) level predicts that…, while the MINDO/3 method gives opposing results.
Tere is thus no clear consent from theory.”Tis is clearly a lack of understanding of the quality of the
calculations. If the results disagree, there is a very high probability that the CCSD(T) results are basi-
cally correct, and the MINDO/3 results are wrong. If you want to make predictions, and not merely
reproduce known results, you need to be able to judge the quality of your results. Tis is by far the
most difficult task in computational chemistry. I hope the present book will give some idea of the
limitations of different methods.
Computers don’t solve problems, people do. Computers just generate numbers. Although compu-

tational chemistry has evolved to the stagewhere it often can be competitivewith experimentalmeth-
ods for generating a value for a given property of a given molecule, the number of possible molecules
(there are an estimated 10200 molecules with a molecular weight less than 850) and their associated
properties is so huge that only a very tiny fraction will ever be amenable to calculations (or exper-
iments). Furthermore, with the constant increase in computational power, a calculation that barely
can be done today will be possible onmedium-sizedmachines in 5–10 years. Prediction of properties
with methods that do not provide converged results (with respect to theoretical level) will typically
only have a lifetime of a few years before being surpassed by more accurate calculations.
Te real strength of computational chemistry is the ability to generate data (e.g. by analyzing the

wave function) from which a human may gain insight, and thereby rationalize the behavior of a large
class of molecules. Such insights and rationalizations are much more likely to be useful over a longer
period of time than the raw results themselves. A good example is the concept used by organic
chemists with molecules composed of functional groups, and representing reactions by “pushing
electrons”. Tis may not be particularly accurate from a quantum mechanical point of view, but it is
very effective in rationalizing a large body of experimental results, and has good predictive power.
Just as computers do not solve problems, mathematics by itself does not provide insight. It merely

provides formulas, a framework for organizing thoughts. It is in this spirit that I have tried to write
this book. Only the necessary (obviously a subjective criterion) mathematical background has been
provided, the aim being that the reader should be able to understand the premises and limitations
of different methods, and follow the main steps in running a calculation. Tis means that in many
cases I have omitted to tell the reader of some of the finer details, which may annoy the purists. How-
ever, I believe the large overview is necessary before embarking on a more stringent and detailed
derivation of the mathematics. Te goal of this book is to provide an overview of commonly used
methods, giving enough theoretical background to understand why, for example, the AMBER force
field is used for modeling proteins but MM2 is used for small organic molecules, or why coupled
cluster inherently is an iterative method, while perturbation theory and configuration interaction
inherently are non-iterative methods, although the CI problem in practice is solved by iterative
techniques.
Te prime focus of this book is on calculating molecular structures and (relative) energies, and

less on molecular properties or dynamical aspects. In my experience, predicting structures and ener-
getics are the main uses of computational chemistry today, although this may well change in the
coming years. I have tried to include most methods that are already extensively used, together with
some that I expect to become generally available in the near future. How detailed the methods are
described depends partly on how practical and commonly used the methods are (both in terms of
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computational resources and software), and partly reflects my own limitations in terms of under-
standing. Although simulations (e.g. molecular dynamics) are becoming increasingly powerful tools,
only a very rudimentary introduction is provided in Chapter 16.Te area is outside my expertise, and
several excellent textbooks are already available.
Computational chemistry contains a strong practical element.Teoretical methods must be trans-

lated into working computer programs in order to produce results. Different algorithms, however,
may have different behaviors in practice, and it becomes necessary to be able to evaluate whether
a certain type of calculation can be carried out with the available computers. Te book thus con-
tains some guidelines for evaluating what type of resources are necessary for carrying out a given
calculation.
Te present book grew out of a series of lecture notes that I have used for teaching a course in

computational chemistry at Odense University, and the style of the book reflects its origin. It is dif-
ficult to master all disciplines in the vast field of computational chemistry. A special thanks to H. J.
Aa. Jensen, K. V. Mikkelsen, T. Saue, S. P. A. Sauer, M. Schmidt, P. M. W. Gill, P.-O. Norrby, D. L.
Cooper, T. U. Helgaker and H. G. Petersen for having read various parts of the book and providing
input. Remaining errors are of course my sole responsibility. A good part of the final transformation
from a set of lecture notes to the present book was done during a sabbatical leave spent with Prof. L.
Radom at the Research School of Chemistry, Australia National University, Canberra, Australia. A
special thanks to him for his hospitality during the stay.
A few comments on the layout of the book. Definitions, acronyms or common phrases are marked

in italic; these can be found in the index. Underline is used for emphasizing important points. Oper-
ators, vectors and matrices are denoted in bold, scalars in normal text. Although I have tried to keep
the notation as consistent as possible, different branches in computational chemistry often use differ-
ent symbols for the same quantity. In order to comply with common usage, I have elected sometimes
to switch notation between chapters. Te second derivative of the energy, for example, is called the
force constant k in force field theory; the corresponding matrix is denoted F when discussing vibra-
tions, and called the Hessian H for optimization purposes.
I have assumed that the reader has no prior knowledge of concepts specific to computational chem-

istry, but has a working understanding of introductory quantum mechanics and elementary math-
ematics, especially linear algebra, vector, differential and integral calculus. Te following features
specific to chemistry are used in the present book without further introduction. Adequate descrip-
tions may be found in a number of quantum chemistry textbooks (J. P. Lowe, Quantum Chemistry,
Academic Press, 1993; I. N. Levine,QuantumChemistry, Prentice Hall, 1992; P.W. Atkins,Molecular
QuantumMechanics, Oxford University Press, 1983).

(1) Te Schrödinger equation, with the consequences of quantized solutions and quantum numbers.
(2) Te interpretation of the square of the wave function as a probability distribution, the Heisenberg

uncertainty principle and the possibility of tunneling.
(3) Te solutions for the hydrogen atom, atomic orbitals.
(4) Te solutions for the harmonic oscillator and rigid rotor.
(5) Temolecular orbitals for the H2 molecule generated as a linear combination of two s-functions,

one on each nuclear centre.
(6) Point group symmetry, notation and representations, and the group theoretical condition for

when an integral is zero.

I have elected to include a discussion of the variational principle and perturbational methods,
although these are often covered in courses in elementary quantum mechanics. Te properties of
angular momentum coupling are used at the level of knowing the difference between a singlet and
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triplet state. I do not believe that it is necessary to understand the details of vector coupling to under-
stand the implications.
Although I have tried to keep each chapter as self-contained as possible, there are unavoidable

dependencies. Te part in Chapter 3 describing HF methods is a prerequisite for understanding
Chapter 4. Both these chapters use terms and concepts for basis sets which are treated in Chapter 5.
Chapter 5, in turn, relies on concepts in Chapters 3 and 4, that is these three chapters form the core
for understanding modern electronic structure calculations. Many of the concepts in Chapters 3 and
4 are also used in Chapters 6, 7, 9, 11 and 15 without further introduction, although these five chap-
ters probably can be read with some benefits without a detailed understanding of Chapters 3 and 4.
Chapter 8, and to a certain extent also Chapter 10, are fairly advanced for an introductory textbook,
such as the present, and can be skipped.Tey do, however, represent areas that are probably going to
be more and more important in the coming years. Function optimization, which is described sepa-
rately in Chapter 14, is part of many areas, but a detailed understanding is not required for following
the arguments in the other chapters. Chapters 12 and 13 are fairly self-contained, and form some of
the background for themethods in the other chapters. Inmy own course I normally take Chapters 12,
13 and 14 fairly early in the course, as they provide background for Chapters 3, 4 and 5.
If you would like to make comments, advise me of possible errors, make clarifications, add ref-

erences, etc., or view the current list of misprints and corrections, please visit the author’s website
(URL: http://bogense.chem.ou.dk/∼icc).
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Preface to the Second Edition

Te changes relative to the first edition are as follows:
� Numerous misprints and inaccuracies in the first edition have been corrected. Most likely some
new ones have been introduced in the process; please check the book website for the most recent
correction list and feel free to report possible problems. Since web addresses have a tendency to
change regularly, please use your favourite search engine to locate the current URL.

� Te methodologies and references in each chapter have been updated with new developments
published between 1998 and 2005.

� More extensive referencing. Complete referencing is impossible, given the large breadth of sub-
jects. I have tried to include references that preferably are recent, have a broad scope and include
key references. From these the reader can get an entry into the field.

� Many figures and illustrations have been redone. Te use of color illustrations has been deferred
in favor of keeping the price of the book down.

� Each chapter or section now starts with a short overview of the methods, described without
mathematics. Tis may be useful for getting a feel for the methods, without embarking on all
the mathematical details. Te overview is followed by a more detailed mathematical descrip-
tion of the method, including some key references that may be consulted for more details. At
the end of the chapter or section, some of the pitfalls and the directions of current research are
outlined.

� Energy units have been converted from kcal/mol to kJ/mol, based on the general opinion that the
scientific world should move towards SI units.

� Furthermore, some chapters have undergone major restructuring:
◦ Chapter 16 (Chapter 13 in the first edition) has been greatly expanded to include a summary of
the most important mathematical techniques used in the book. Te goal is to make the book
more self-contained, that is relevant mathematical techniques used in the book are at least rudi-
mentarily discussed in Chapter 16.

◦ All the statistical mechanics formalism has been collected in Chapter 13.
◦ Chapter 14 has been expanded to cover more of the methodologies used in molecular dynamics.
◦ Chapter 12 on optimization techniques has been restructured.
◦ Chapter 6 on density functional methods has been rewritten.
◦ A new Chapter 1 has been introduced to illustrate the similarities and differences between clas-
sical and quantum mechanics, and to provide some fundamental background.

◦ A rudimentary treatment of periodic systems has been incorporated in Chapters 3 and 14.
◦ A new Chapter 17 has been introduced to describe statistics and QSAR methods.
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◦ I have tried to make the book more modular, that is each chapter is more self-contained. Tis
makes it possible to use only selected chapters, for example for a course, but has the drawback
of repeating the same things in several chapters, rather than simply cross-referencing.

Although themodularity has been improved, there are unavoidable interdependencies. Chapters 3,
4 and 5 contain the essentials of electronic structure theory, and most would include Chapter 6
describing density functionalmethods. Chapter 2 contains a description of empirical force fieldmeth-
ods, and this is tightly coupled to the simulation methods in Chapter 14, which of course leans on
the statistical mechanics in Chapter 13. Chapter 1 on fundamental issues is of a more philosophical
nature, and can be skipped. Chapter 16 on mathematical techniques is mainly for those not already
familiar with this, and Chapter 17 on statistical methods may be skipped as well.
Definitions, acronyms and common phrases are marked in italic. In a change from the first edition,

where underlining was used, italic text has also been used for emphasizing important points.
A number of people have offered valuable help and criticisms during the updating process. I would

especially like to thank S. P. A. Sauer, H. J. Aa. Jensen, E. J. Baerends and P. L. A. Popelier for hav-
ing read various parts of the book and provided input. Remaining errors are of course my sole
responsibility.

Specific Comments on the Preface to the First Edition

Bohacek et al.1 have estimated the number of possible compounds composed of H, C, N, O and S
atoms with 30 non-hydrogen atoms or fewer to be 1060. Although this number is so large that only
a very tiny fraction will ever be amenable to investigation, the concept of functional groups means
that one does not need to evaluate all compounds in a given class to determine their properties. Te
number of alkanes meeting the above criteria is ∼1010: clearly these will all have very similar and
well-understood properties, and there is no need to investigate all 1010 compounds.

Reference

 R. S. Bohacek, C. McMartin and W. C. Guida,Medicinal Research Reviews 16 (1), 3–50 (1996).



xxi

Preface to the Third Edition

Te changes relative to the second edition are as follows:

Numerous misprints and inaccuracies in the second edition have been corrected. Most likely some
new ones have been introduced in the process, please check the book website for the most recent
correction list and feel free to report possible problems.

http://www.wiley.com/go/jensen/computationalchemistry3

� Methodologies and references in each chapter have been updated with new developments pub-
lished between 2005 and 2015.

� Semi-empirical methods have been moved from Chapter 3 to a separate Chapter 7.
� Some specific new topics that have been included:

1. Polarizable force fields
2. Tight-binding DFT
3. More extensive DFT functionals, including range-separated and dispersion corrected

functionals
4. More extensive covering of excited states
5. More extensive time-dependent molecular properties
6. Accelerated molecular dynamics methods
7. Tensor decomposition methods
8. Cluster analysis
9. Reduced scaling and reduced prefactor methods.

A reoccuring request over the years for a third edition has been: “It would be very useful to have
recommendations on which method to use for a given type of problem.” I agree that this would be
useful, but I have refrained from it for two main reasons:

1. Problems range from very narrow ones for a small set of systems, to very broad ones for a wide set
of systems, and covering these and all intermediate cases even rudementary is virtually impossible.

2. Making recommendations like “do not use method XXX because it gives poor results” will imme-
diately invoke harsh responses from the developers of method XXX, showing that it gives good
results for a selected subset of problems and systems.

A vivid example of the above is the pletora of density functional methods where a particular func-
tional often gives good results for a selected subset of systems and properties, but may fail for other
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subsets of systems and properties, and no current functional provides good results for all systems
and properties. I have limited the recommendations to point out well-known deficiencies.
A similar problem is present when selecting references. I have selected references based on three

overriding principles:

1. References to work containing reference data, such as experimental structural results, or ground-
breaking work, such as the Hohenberg–Koch theorem, are to the original work.

2. Early in each chapter or subsection, I have included review-type papers, where these are available.
3. Lacking review-type papers, I have selected one or a few papers that preferably are recent, but

must at the same time also be written in a scholarly style, and should contain a good selection of
references.

Te process of literature searching has improved tremendously over the years, and having a few
entry points usually allows searching both backwards and forwards to find other references within
the selected topic.
In relation to the quoted number of compounds possible for a given number of atoms, Ruddigkeit

et al. have estimated the number of plausible compounds composed of H, C, N, O, S and a halogen
with up to 17 non-hydrogen atoms to be 166 × 109.1

Reference

 L. Ruddigkeit, R. van Deursen, L. C. Blum and J.-L. Reymond, Journal of Chemical Information and
Modeling 52 (11), 2864–2875 (2012).
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Introduction

Chemistry is the science dealing with construction, transformation and properties ofmolecules.Te-
oretical chemistry is the subfield where mathematical methods are combined with fundamental laws
of physics to study processes of chemical relevance.1–7
Molecules are traditionally considered as “composed” of atoms or, in a more general sense, as a col-

lection of charged particles, positive nuclei and negative electrons.Te only important physical force
for chemical phenomena is the Coulomb interaction between these charged particles. Molecules dif-
fer because they contain different nuclei and numbers of electrons, or because the nuclear centers are
at different geometrical positions.Te latter may be “chemically different” molecules such as ethanol
and dimethyl ether or different “conformations” of, for example, butane.
Given a set of nuclei and electrons, theoretical chemistry can attempt to calculate things such as:

� Which geometrical arrangements of the nuclei correspond to stable molecules?
� What are their relative energies?
� What are their properties (dipole moment, polarizability, NMR coupling constants, etc.)?
� What is the rate at which one stable molecule can transform into another?
� What is the time dependence of molecular structures and properties?
� How do different molecules interact?

Te only systems that can be solved exactly are those composed of only one or two particles, where
the latter can be separated into two pseudo one-particle problems by introducing a “center of mass”
coordinate system. Numerical solutions to a given accuracy (which may be so high that the solutions
are essentially “exact”) can be generated for many-body systems, by performing a very large number
of mathematical operations. Prior to the advent of electronic computers (i.e. before 1950), the num-
ber of systems that could be treated with a high accuracy was thus very limited. During the 1960s and
1970s, electronic computers evolved from a few very expensive, difficult to use, machines to become
generally available for researchers all over the world. Te performance for a given price has been
steadily increasing since and the use of computers is now widespread in many branches of science.
Tis has spawned a new field in chemistry, computational chemistry, where the computer is used as
an “experimental” tool, much like, for example, an NMR (nuclear magnetic resonance) spectrometer.
Computational chemistry is focused on obtaining results relevant to chemical problems, not

directly at developing new theoretical methods. Tere is of course a strong interplay between tradi-
tional theoretical chemistry and computational chemistry. Developing new theoretical models may

Introduction to Computational Chemistry, Tird Edition. Frank Jensen.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: http://www.wiley.com/go/jensen/computationalchemistry3
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enable new problems to be studied, and results from calculations may reveal limitations and suggest
improvements in the underlying theory. Depending on the accuracy wanted, and the nature of the
system at hand, one can today obtain useful information for systems containing up to several thou-
sand particles. One of the main problems in computational chemistry is selecting a suitable level of
theory for a given problem and to be able to evaluate the quality of the obtained results. Te present
book will try to put the variety of modern computational methods into perspective, hopefully giving
the reader a chance of estimating which types of problems can benefit from calculations.

. Fundamental Issues

Before embarking on a detailed description of the theoretical methods in computational chemistry,
it may be useful to take a wider look at the background for the theoretical models and how they relate
to methods in other parts of science, such as physics and astronomy.
A very large fraction of the computational resources in chemistry and physics is used in solving

the so-called many-body problem. Te essence of the problem is that two-particle systems can in
many cases be solved exactly by mathematical methods, producing solutions in terms of analytical
functions. Systems composed of more than two particles cannot be solved by analytical methods.
Computational methods can, however, produce approximate solutions, which in principle may be
refined to any desired degree of accuracy.
Computers are not smart – at the core level they are in fact very primitive. Smart programmers,

however, can make sophisticated computer programs, which may make the computer appear smart,
or even intelligent. However, the basics of any computer program consist of doing a few simple tasks
such as:

� Performing amathematical operation (adding, multiplying, square root, cosine, etc.) on one or two
numbers.

� Determining the relationship (equal to, greater than, less than or equal to, etc.) between two
numbers.

� Branching depending on a decision (add two numbers if N > 10, else subtract one number from
the other).

� Looping (performing the same operation a number of times, perhaps on a set of data).
� Reading and writing data from and to external files.

Tese tasks are the essence of any programming language, although the syntax, data handling and
efficiency depend on the language. Te main reason why computers are so useful is the sheer speed
with which they can perform these operations. Even a cheap off-the-shelf personal computer can
perform billions (109) of operations per second.
Within the scientific world, computers are used for two main tasks: performing numerically inten-

sive calculations and analyzing large amounts of data. Te latter can, for example, be pictures
generated by astronomical telescopes or gene sequences in the bioinformatics area that need to be
compared.Te numerically intensive tasks are typically related to simulating the behavior of the real
world, by a more or less sophisticated computational model. Te main problem in simulations is
the multiscale nature of real-world problems, often spanning from subnanometers to millimeters
(10−10−10−3) in spatial dimensions and from femtoseconds to milliseconds (10−15−10−3) in the time
domain.
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Figure . Hierarchy of building blocks for describing a chemical system.

. Describing the System

In order to describe a system we need four fundamental features:
� System description. What are the fundamental units or “particles” and how many are there?
� Starting condition. Where are the particles and what are their velocities?
� Interaction. What is the mathematical form for the forces acting between the particles?
� Dynamical equation. What is the mathematical form for evolving the system in time?

Te choice of “particles” puts limitations on what we are ultimately able to describe. If we
choose atomic nuclei and electrons as our building blocks, we can describe atoms and molecules,
but not the internal structure of the atomic nucleus. If we choose atoms as the building blocks, we
can describemolecular structures, but not the details of the electron distribution. If we choose amino
acids as the building blocks, we may be able to describe the overall structure of a protein, but not the
details of atomic movements (see Figure 1.1).
Te choice of starting conditions effectively determines what we are trying to describe. Te com-

plete phase space (i.e. all possible values of positions and velocities for all particles) is huge andwewill
only be able to describe a small part of it. Our choice of starting conditions determines which part
of the phase space we sample, for example which (structural or conformational) isomer or chemical
reaction we can describe. Tere are many structural isomers with the molecular formula C6H6, but
if we want to study benzene, we should place the nuclei in a hexagonal pattern and start them with
relatively low velocities.
Te interaction between particles in combination with the dynamical equation determines how

the system evolves in time. At the fundamental level, the only important force at the atomic level is
the electromagnetic interaction. Depending on the choice of system description (particles), however,
this may result in different effective forces. In force field methods, for example, the interactions are
parameterized as stretch, bend, torsional, van der Waals, etc., interactions.
Te dynamical equation describes the time evolution of the system. It is given as a differential

equation involving both time and space derivatives, with the exact form depending on the particle
masses and velocities. By solving the dynamical equation the particles’ position and velocity can be
predicted at later (or earlier) times relative to the starting conditions, that is how the system evolves
in the phase space.

. Fundamental Forces

Te interaction between particles can be described in terms of either a force (F) or a potential (V).
Tese are equivalent, as the force is the derivative of the potential with respect to the position r:

F(r) = −�V
� r

(1.1)
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Table . Fundamental interactions.

Name Particles Range (m) Relative strength

Strong interaction Quarks <10−15 100
Weak interaction Quarks, leptons <10−15 0.001
Electromagnetic Charged particles ∞ 1
Gravitational Mass particles ∞ 10−40

Current knowledge indicates that there are four fundamental interactions, at least under normal con-
ditions, as listed in Table 1.1.
Quarks are the building blocks of protons and neutrons, and lepton is a common name for a

group of particles including the electron and the neutrino. Te strong interaction is the force hold-
ing the atomic nucleus together, despite the repulsion between the positively charged protons. Te
weak interaction is responsible for radioactive decay of nuclei by conversion of neutrons to protons
(β decay). Te strong and weak interactions are short-ranged and are only important within the
atomic nucleus.
Both the electromagnetic and gravitational interactions depend on the inverse distance between

the particles and are therefore of infinite range. Te electromagnetic interaction occurs between all
charged particles, while the gravitational interaction occurs between all particles with a mass, and
they have the same overall functional form:

Velec(rij) = Celec
qiqj

rij

Vgrav(rij) = −Cgrav
mimj

rij

(1.2)

In SI units Celec = 9.0 × 109 N m2/C2 and Cgrav = 6.7 × 10−11 N m2/kg2, while in atomic units
Celec = 1 and Cgrav = 2.4 × 10−43. On an atomic scale, the gravitational interaction is completely
negligible compared with the electromagnetic interaction. For the interaction between a proton and
an electron, for example, the ratio between Velec and Vgrav is 1039. On a large macroscopic scale, such
as planets, the situation is reversed. Here the gravitational interaction completely dominates and the
electromagnetic interaction is absent.
On a more fundamental level, it is believed that the four forces are really just different manifes-

tations of a single common interaction, because of the relatively low energy regime we are living in.
It has been shown that the weak and electromagnetic forces can be combined into a single unified
theory, called quantum electrodynamics (QED). Similarly, the strong interaction can be coupled with
QED into what is known as the standard model. Much effort is being devoted to also include the
gravitational interaction into a grand unified theory, and string theory is currently believed to hold
the greatest promise for such a unification.
Only the electromagnetic interaction is important at the atomic and molecular level, and in the

large majority of cases, the simple Coulomb form (in atomic units) is sufficient:

VCoulomb(rij) =
qiqj

rij
(1.3)

WithinQED, the Coulomb interaction is only the zeroth-order term and the complete interaction can
be written as an expansion in terms of the (inverse) velocity of light, c. For systems where relativistic
effects are important (i.e. containing elements from the lower part of the periodic table) or when
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high accuracy is required, the first-order correction (corresponding to an expansion up to 1/c2) for
the electron–electron interaction may be included:

Velec(r12) =
1

r12

[

1 − 1
2

(

α1 ⋅ α2 +
(α1 ⋅ r12)(α2 ⋅ r12)

r212

)]

(1.4)

Te first-order correction is known as the Breit term, and α1 and α2 represent velocity operators.
Te first term in Equation (1.4) can be considered as a magnetic interaction between two electrons,
but the whole Breit correction describes a “retardation” effect, since the interaction between distant
particles is “delayed” relative to interactions between close particles, owing to the finite value of c (in
atomic units, c ∼ 137).

. The Dynamical Equation

Temathematical form for the dynamical equation depends on the mass and velocity of the particles
and can be divided into four regimes (see Figure 1.2).
Newtonian mechanics, exemplified by Newton’s second law (F = ma), applies for “heavy”, “slow-

moving” particles. Relativistic effects become important when the velocity is comparable to the speed
of light, causing an increase in the particle mass m relative to the rest mass m0. A pragmatic border-
line between Newtonian and relativistic (Einstein) mechanics is∼1/3c, corresponding to a relativistic
correction of a few percent.
Light particles display both wave and particle characteristics and must be described by quantum

mechanics, with the borderline being approximately the mass of a proton. Electrons are much lighter
and can only be described by quantummechanics, while atoms andmolecules, with a few exceptions,
behave essentially as classical particles. Hydrogen (protons), being the lightest nucleus, represents a
borderline case, whichmeans that quantum corrections in some cases are essential. A prime example
is the tunnelling of hydrogen through barriers, allowing reactions involving hydrogen to occur faster
than expected from transition state theory.

Velocity

Mass

Relativistic

Non-relativistic

Quantum Classical

~ 1/3 c
~ 108 m/s

~ 10-27 kg 
~ 1 amu

Dirac
HΨ = idΨ/dt

Schrödinger 
HΨ = idΨ/dt

Einstein 
F = ma

Newton
F = ma

Figure . Domains of dynamical equations.
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A major difference between quantum and classical mechanics is that classical mechanics is
deterministic while quantum mechanics is probabilistic (more correctly, quantum mechanics is also
deterministic, but the interpretation is probabilistic). Deterministic means that Newton’s equation
can be integrated over time (forward or backward) and can predict where the particles are at a
certain time. Tis, for example, allows prediction of where and when solar eclipses will occur many
thousands of years in advance, with an accuracy of meters and seconds. Quantummechanics, on the
other hand, only allows calculation of the probability of a particle being at a certain place at a certain
time. Te probability function is given as the square of a wave function, P(r,t) = Ψ2(r,t), where the
wave functionΨ is obtained by solving either the Schrödinger (non-relativistic) or Dirac (relativistic)
equation. Although they appear to be the same in Figure 1.2, they differ considerably in the form of
the operator H.
For classical mechanics at low velocities compared with the speed of light, Newton’s second law

applies:

F =
dp
dt

(1.5)

If the particle mass is constant, the derivative of themomentum p is the mass times the acceleration:

p = mv

F =
dp
dt

= mdv
dt

= ma (1.6)

Since the force is the derivative of the potential (Equation (1.1)) and the acceleration is the second
derivative of the position r with respect to time, it may also be written in a differential form:

− �V
� r

= m �2r
� t2

(1.7)

Solving this equation gives the position of each particle as a function of time, that is r(t).
At velocities comparable to the speed of light, Newton’s equation is formally unchanged, but the

particle mass becomes a function of the velocity, and the force is therefore not simply a constant
(mass) times the acceleration:

m =
m0

√
1 − v2∕c2

(1.8)

For particles with small masses, primarily electrons, quantum mechanics must be employed. At low
velocities, the relevant equation is the time-dependent Schrödinger equation:

HΨ = i�Ψ
� t

(1.9)

Te Hamiltonian operator is given as a sum of kinetic and potential energy operators:

HSchrödinger = T + V

T =
p2

2m
= − 1

2m
∇2

(1.10)

Solving the Schrödinger equation gives the wave function as a function of time, and the probability
of observing a particle at a position r and time t is given as the square of the wave function:

P(r, t) = Ψ2(r, t) (1.11)
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For light particles moving at a significant fraction of the speed of light, the Schrödinger equation is
replaced by the Dirac equation:

HΨ = i�Ψ
� t

(1.12)

Although it is formally identical to the Schrödinger equation, the Hamiltonian operator is signifi-
cantly more complicated:

HDirac = (cα ⋅ p + βmc2) + V (1.13)

Teα andβ are 4 × 4 matrices and the relativistic wave function consequently has four components.
Traditionally, these are labelled the large and small components, each having an � and � spin function
(note the difference between theα andβmatrices and � and � spin functions).Te large component
describes the electronic part of thewave function, while the small component describes the positronic
(electron antiparticle) part of the wave function, and theα andβmatrices couple these components.
In the limit of c → ∞, the Dirac equation reduces to the Schrödinger equation, and the two large
components of the wave function reduce to the � and � spin-orbitals in the Schrödinger picture.

. Solving the Dynamical Equation

Both the Newton/Einstein and Schrödinger/Dirac dynamical equations are differential equations
involving the derivative of either the position vector or wave function with respect to time. For two-
particle systems with simple interaction potentials V, these can be solved analytically, giving r(t) or
Ψ(r,t) in terms of mathematical functions. For systems with more than two particles, the differential
equation must be solved by numerical techniques involving a sequence of small finite time steps.
Consider a set of particles described by a position vector ri at a given time ti. A small time step

Δt later, the positions can be calculated from the velocities, acceleration, hyperaccelerations, etc.,
corresponding to a Taylor expansion with time as the variable

ri+1 = ri + vi(Δt) + 1
2ai(Δt)2 + 1

6bi(Δt)3 + ⋅ ⋅ ⋅ (1.14)

Te positions a small time step Δt earlier were (replacing Δt with −Δt)

ri−1 = ri − vi(Δt) + 1
2ai(Δt)2 − 1

6bi(Δt)3 + ⋅ ⋅ ⋅ (1.15)

Addition of these two equations gives a recipe for predicting the positions a time stepΔt later from the
current and previous positions, and the current acceleration, amethod known as theVerlet algorithm:

ri+1 = (2ri − ri−1) + ai(Δt)2 + ⋅ ⋅ ⋅ (1.16)

Note that all odd terms in theVerlet algorithmdisappear, that is the algorithm is correct to third order
in the time step. Te acceleration can be calculated from the force or, equivalently, the potential:

a = F
m

= − 1
m

�V
� r

(1.17)

Te time step Δt is an important control parameter for a simulation. Te largest value of Δt is deter-
mined by the fastest process occurring in the system, typically being an order of magnitude smaller
than the fastest process. For simulating nuclear motions, the fastest process is the motion of hydro-
gens, being the lightest particles. Hydrogen vibrations occur with a typical frequency of 3000 cm−1,
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corresponding to ∼1014 s−1, and therefore necessitating time steps of the order of one femtosecond
(10−15 s).

. Separation of Variables

Asdiscussed in the previous section, the central problem is solving a differential equationwith respect
to either the position (classical) or wave function (quantum) for the particles in the system.Te stan-
dard method of solving differential equations is to find a set of coordinates where the differential
equation can be separated into less complicated equations. Te first step is to introduce a center of
mass coordinate system, defined as the mass-weighted sum of the coordinates of all particles, which
allows the translation of the combined system with respect to a fixed coordinate system to be sepa-
rated from the internal motion. For a two-particle system, the internal motion is then described in
terms of a reduced mass moving relative to the center of mass, and this can be further transformed
by introducing a coordinate system that reflects the symmetry of the interaction between the two
particles. If the interaction only depends on the interparticle distance (e.g. Coulomb or gravitational
interaction), the coordinate system of choice is normally a polar (two-dimensional) or spherical polar
(three-dimensional) system. In these coordinate systems, the dynamical equation can be transformed
into solving one-dimensional differential equations.
For more than two particles, it is still possible to make the transformation to the center of mass

system. However, it is no longer possible to find a set of coordinates that allows a separation of the
degrees of freedom for the internal motion, thus preventing an analytical solution. For many-body
(N > 2) systems, the dynamical equation must therefore be solved by computational (numerical)
methods. Nevertheless, it is often possible to achieve an approximate separation of variables based
on physical properties, for example particles differing considerably in mass (such as nuclei and elec-
trons). A two-particle system consisting of one nucleus and one electron can be solved exactly by
introducing a center of mass system, thereby transforming the problem into a pseudo-particle with a
reducedmass (� = m1m2/(m1 + m2)) moving relative to the center of mass. In the limit of the nucleus
being infinitely heavier than the electron, the center of mass system becomes identical to that of the
nucleus. In this limit, the reduced mass becomes equal to that of the electron, which moves relative
to the (stationary) nucleus. For large, but finite, mass ratios, the approximation � ≈ me is unnecessary
but may be convenient for interpretative purposes. For many-particle systems, an exact separation
is not possible, and the Born–Oppenheimer approximation corresponds to assuming that the nuclei
are infinitely heavier than the electrons. Tis allows the electronic problem to be solved for a given
set of stationary nuclei. Assuming that the electronic problem can be solved for a large set of nuclear
coordinates, the electronic energy forms a parametric hypersurface as a function of the nuclear coor-
dinates, and the motion of the nuclei on this surface can then be solved subsequently.
If an approximate separation is not possible, themany-body problem can often be transformed into

a pseudo one-particle system by taking the average interaction into account. For quantummechanics,
this corresponds to the Hartree–Fock approximation, where the average electron–electron repulsion
is incorporated. Such pseudo one-particle solutions often form the conceptual understanding of the
system and provide the basis for more refined computational methods.
Molecules are sufficiently heavy that their motions can be described quite accurately by classical

mechanics. In condensed phases (solution or solid state), there is a strong interaction between
molecules, and a reasonable description can only be attained by having a large number of individual
molecules moving under the influence of each other’s repulsive and attractive forces. Te forces in
this case are complex and cannot be written in a simple form such as the Coulomb or gravitational
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interaction. No analytical solutions can be found in this case, even for a two-particle (molecular) sys-
tem. Similarly, no approximate solution corresponding to a Hartree–Fock model can be constructed.
Te only method in this case is direct simulation of the full dynamical equation.

1.6.1 Separating Space and Time Variables

Te time-dependent Schrödinger equation involves differentiation with respect to both time and
position, the latter contained in the kinetic energy of the Hamiltonian operator:

H(r, t)Ψ(r, t) = i�Ψ(r, t)
� t

H(r, t) = T(r) + V(r, t)
(1.18)

For (bound) systems where the potential energy operator is time-independent (V(r,t) = V(r)), the
Hamiltonian operator becomes time-independent and yields the total energy when acting on the
wave function. Te energy is a constant, independent of time, but depends on the space variables.

H(r, t) = H(r) = T(r) + V(r)

H(r)Ψ(r, t) = E(r)Ψ(r, t)
(1.19)

Inserting this in the time-dependent Schrödinger equation shows that the time and space variables
of the wave function can be separated:

H(r)Ψ(r, t) = E(r)Ψ(r, t) = i�Ψ(r, t)
� t

Ψ(r, t) = Ψ(r)e−iEt
(1.20)

Te latter follows from solving the first-order differential equation with respect to time, and shows
that the time dependence can be written as a simple phase factor multiplied by the spatial wave func-
tion. For time-independent problems, this phase factor is normally neglected, and the starting point
is taken as the time-independent Schrödinger equation:

H(r)Ψ(r) = E(r)Ψ(r) (1.21)

1.6.2 Separating Nuclear and Electronic Variables

Electrons are very light particles and cannot be described by classical mechanics, while nuclei are
sufficiently heavy that they display only small quantum effects. Te large mass difference indicates
that the nuclear velocities are much smaller than the electron velocities, and the electrons therefore
adjust very fast to a change in the nuclear geometry.
For a general N-particle system, the Hamiltonian operator contains kinetic (T) and potential (V)

energy for all particles:

H = T + V

T =
N∑

i=1
Ti ; V =

N∑

i>j
Vij

(1.22)




